Harvard University, CS50: Intro To Computer Science

This is CS50, Harvard University’s introduction to the intellectual enterprises of computer science and the art of programming, for concentrators and non-concentrators alike, with or without prior programming experience. (Two thirds of CS50 students have never taken CS before.) This course teaches you how to solve problems, both with and without code, with an emphasis on correctness, design, and style. Topics include computational thinking, abstraction, algorithms, data structures, and computer science more generally. Problem sets inspired by the arts, humanities, social sciences, and sciences. More than teach you how to program in one language, this course teaches you how to program fundamentally and how to teach yourself new languages ultimately. The course starts with a traditional but omnipresent language called C that underlies today’s newer languages, via which you’ll learn not only about functions, variables, conditionals, loops, and more, but also about how computers themselves work underneath the hood, memory and all. The course then transitions to Python, a higher-level language that you’ll understand all the more because of C. Toward term’s end, the course introduces SQL, via which you can store data in databases, along with HTML, CSS, and JavaScript, via which you can create web and mobile apps alike. Course culminates in a final project.
     Java Programming: Solving Problems with Software

Learn to code in Java and improve your programming and problem-solving skills. You will learn to design algorithms as well as develop and debug programs. Using custom open-source classes, you will write programs that access and transform images, websites, and other types of data. At the end of the course you will build a program that determines the popularity of different baby names in the US over time by analyzing comma separated value (CSV) files. After completing this course you will be able to: 1. Edit, compile, and run a Java program; 2. Use conditionals and loops in a Java program; 3. Use Java API documentation in writing programs. 4. Debug a Java program using the scientific method; 5. Write a Java method to solve a specific problem; 6. Develop a set of test cases as part of developing a program; 7. Create a class with multiple methods that work together to solve a problem; and 8. Use divide-and-conquer design techniques for a program that uses multiple methods.
     Java Programming: Arrays, Lists, and Structured Data

Build on the software engineering skills you learned in “Java Programming: Solving Problems with Software” by learning new data structures. Use these data structures to build more complex programs that use Java’s object-oriented features. At the end of the course you will write an encryption program and a program to break your encryption algorithm. After completing this course, you will be able to: 1. Read and write data from/to files; 2. Solve problems involving data files; 3. Perform quantitative analyses of data (e.g., finding maximums, minimums, averages); 4. Store and manipulate data in an array or ArrayList; 5. Combine multiple classes to solve larger problems; 6. Use iterables and collections (including maps) in Java.
     UC San Diego Data Structures and Performance

In this course, you will use and analyze data structures that are used in industry-level applications, such as linked lists, trees, and hashtables. You will explain how these data structures make programs more efficient and flexible. You will apply asymptotic Big-O analysis to describe the performance of algorithms and evaluate which strategy to use for efficient data retrieval, addition of new data, deletion of elements, and/or memory usage. The program you will build throughout this course allows its user to manage, manipulate and reason about large sets of textual data. This is an intermediate Java course, and we will build on your prior knowledge. This course is designed around the same video series as in our first course in this specialization, including explanations of core content, learner videos, student and engineer testimonials, and support videos -- to better allow you to choose your own path through the course!
     Duke Java Programming: Principles of Software Design

Solve real world problems with Java using multiple classes. Learn how to create programming solutions that scale using Java interfaces. Recognize that software engineering is more than writing code - it also involves logical thinking and design. By the end of this course you will have written a program that analyzes and sorts earthquake data, and developed a predictive text generator. After completing this course, you will be able to: 1. Use sorting appropriately in solving problems; 2. Develop classes that implement the Comparable interface; 3. Use timing data to analyze empirical performance; 4. Break problems into multiple classes, each with their own methods; 5. Determine if a class from the Java API can be used in solving a particular problem; 6. Implement programming solutions using multiple approaches and recognize tradeoffs; 7. Use object-oriented concepts including interfaces and abstract classes when developing programs; 8. Appropriately hide implementation decisions so they are not visible in public methods; and 9. Recognize the limitations of algorithms and Java programs in solving problems. 10. Recognize standard Java classes and idioms including exception-handling, static methods, java.net, and java.io packages.
     Duke Java Programming: Build a Recommendation System

Ever wonder how Netflix decides what movies to recommend for you? Or how Amazon recommends books? We can get a feel for how it works by building a simplified recommender of our own! In this capstone, you will show off your problem solving and Java programming skills by creating recommender systems. You will work with data for movies, including ratings, but the principles involved can easily be adapted to books, restaurants, and more. You will write a program to answer questions about the data, including which items should be recommended to a user based on their ratings of several movies. Given input files on users ratings and movie titles, you will be able to: 1. Read in and parse data into lists and maps; 2. Calculate average ratings; 3. Calculate how similar a given rater is to another user based on ratings; and 4. Recommend movies to a given user based on ratings. 5. Display recommended movies for a given user on a webpage.
     University of Washington Programming Languages, Part A

This course is an introduction to the basic concepts of programming languages, with a strong emphasis on functional programming. The course uses the languages ML, Racket, and Ruby as vehicles for teaching the concepts, but the real intent is to teach enough about how any language “fits together” to make you more effective programming in any language -- and in learning new ones. This course is neither particularly theoretical nor just about programming specifics -- it will give you a framework for understanding how to use language constructs effectively and how to design correct and elegant programs. By using different languages, you will learn to think more deeply than in terms of the particular syntax of one language. The emphasis on functional programming is essential for learning how to write robust, reusable, composable, and elegant programs. Indeed, many of the most important ideas in modern languages have their roots in functional programming. Get ready to learn a fresh and beautiful way to look at software and how to have fun building it.
     University of Washington Programming Languages, Part B

This course is an introduction to the basic concepts of programming languages, with a strong emphasis on functional programming. The course uses the languages ML, Racket, and Ruby as vehicles for teaching the concepts, but the real intent is to teach enough about how any language “fits together” to make you more effective programming in any language -- and in learning new ones. This course is neither particularly theoretical nor just about programming specifics -- it will give you a framework for understanding how to use language constructs effectively and how to design correct and elegant programs. By using different languages, you will learn to think more deeply than in terms of the particular syntax of one language. The emphasis on functional programming is essential for learning how to write robust, reusable, composable, and elegant programs. Indeed, many of the most important ideas in modern languages have their roots in functional programming. Get ready to learn a fresh and beautiful way to look at software and how to have fun building it.
     University of Washington Programming Languages, Part C

This course is an introduction to the basic concepts of programming languages, with a strong emphasis on functional programming. The course uses the languages ML, Racket, and Ruby as vehicles for teaching the concepts, but the real intent is to teach enough about how any language “fits together” to make you more effective programming in any language -- and in learning new ones. This course is neither particularly theoretical nor just about programming specifics -- it will give you a framework for understanding how to use language constructs effectively and how to design correct and elegant programs. By using different languages, you will learn to think more deeply than in terms of the particular syntax of one language. The emphasis on functional programming is essential for learning how to write robust, reusable, composable, and elegant programs. Indeed, many of the most important ideas in modern languages have their roots in functional programming. Get ready to learn a fresh and beautiful way to look at software and how to have fun building it.
     University of Jerusalem Build a Modern Computer from First Principles: From Nand to Tetris Part 1

In this project-centered course* you will build a modern computer system, from the ground up. We’ll divide this fascinating journey into six hands-on projects that will take you from constructing elementary logic gates all the way through creating a fully functioning general purpose computer. In the process, you will learn - in the most direct and constructive way - how computers work, and how they are designed.
     University of Jerusalem Build a Modern Computer from First Principles: From Nand to Tetris Part 2

In this project-centered course you will build a modern software hierarchy, designed to enable the translation and execution of object-based, high-level languages on a bare-bone computer hardware platform. In particular, you will implement a virtual machine and a compiler for a simple, Java-like programming language, and you will develop a basic operating system that closes gaps between the high-level language and the underlying hardware platform. In the process, you will gain a deep, hands-on understanding of numerous topics in applied computer science, e.g. stack processing, parsing, code generation, and classical algorithms and data structures for memory management, vector graphics, input-output handling, and various other topics that lie at the very core of every modern computer system. This is a self-contained course: all the knowledge necessary to succeed in the course and build the various systems will be given as part of the learning experience. The only prerequisite is knowledge of programming at the level acquired in introduction to computer science courses. All the software tools and materials that are necessary to complete the course will be supplied freely after you enrol in the course.
     Georgia Tech Introduction to Operating Systems

     IBM Software Engineering Introduction

After completing this course, you should be able to: 1. Describe software engineering, approaches to software development, and software development tools and technologies. 2. Evaluate different types of programming languages and synthesize basic programming constructs. 3. Outline approaches to application and deployment architectures. 4. Summarize the skills required in software engineering and describe the career options it provides.
     Stanford Supervised Machine Learning: Regression and Classification

In the first course of the Machine Learning Specialization, you will: • Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn. • Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. In this beginner-friendly program, you will learn the fundamentals of machine learning and how to use these techniques to build real-world AI applications. It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.)
     University of Colorado Database Management Essentials

Database Management Essentials provides the foundation you need for a career in database development, data warehousing, or business intelligence, as well as for the entire Data Warehousing for Business Intelligence specialization. In this course, you will create relational databases, write SQL statements to extract information to satisfy business reporting requests, create entity relationship diagrams (ERDs) to design databases, and analyze table designs for excessive redundancy. As you develop these skills, you will use either Oracle, MySQL, or PostgreSQL to execute SQL statements and a database diagramming tool such as the ER Assistant or Visual Paradigm to create ERDs. We’ve designed this course to ensure a common foundation for specialization learners. Everyone taking the course can jump right in with writing SQL statements in Oracle, MySQL, or PostgreSQL.
     Stanford Cryptography 1

Cryptography is an indispensable tool for protecting information in computer systems. In this course you will learn the inner workings of cryptographic systems and how to correctly use them in real-world applications. The course begins with a detailed discussion of how two parties who have a shared secret key can communicate securely when a powerful adversary eavesdrops and tampers with traffic. We will examine many deployed protocols and analyze mistakes in existing systems. The second half of the course discusses public-key techniques that let two parties generate a shared secret key. Throughout the course participants will be exposed to many exciting open problems in the field and work on fun (optional) programming projects. In a second course (Crypto II) we will cover more advanced cryptographic tasks such as zero-knowledge, privacy mechanisms, and other forms of encryption.
     John Hopkins University The Unix Workbench

Unix forms a foundation that is often very helpful for accomplishing other goals you might have for you and your computer, whether that goal is running a business, writing a book, curing disease, or creating the next great app. The means to these goals are sometimes carried out by writing software. Software can’t be mined out of the ground, nor can software seeds be planted in spring to harvest by autumn. Software isn’t produced in factories on an assembly line. Software is a hand-made, often bespoke good. If a software developer is an artisan, then Unix is their workbench. Unix provides an essential and simple set of tools in a distraction-free environment. Even if you’re not a software developer learning Unix can open you up to new methods of thinking and novel ways to scale your ideas. This course is intended for folks who are new to programming and new to Unix-like operating systems like macOS and Linux distributions like Ubuntu. Most of the technologies discussed in this course will be accessed via a command line interface. Command line interfaces can seem alien at first, so this course attempts to draw parallels between using the command line and actions that you would normally take while using your mouse and keyboard. You’ll also learn how to write little pieces of software in a programming language called Bash, which allows you to connect together the tools we’ll discuss. My hope is that by the end of this course you be able to use different Unix tools as if they’re interconnecting Lego bricks.
     Princeton University Computer Science: Algorithms, Theory, and Machines

First, we introduce classic algorithms along with scientific techniques for evaluating performance, in the context of modern applications. Next, we introduce classic theoretical models that allow us to address fundamental questions about computation, such as computability, universality, and intractability. We conclude with machine architecture (including machine-language programming and its relationship to coding in Java) and logic design (including a full CPU design built from the ground up). The course emphasizes the relationships between applications programming, the theory of computation, real computers, and the field's history and evolution, including the nature of the contributions of Boole, Shannon, Turing, von Neumann, and others.
     Princeton University Algorithms, Part I

This course covers the essential information that every serious programmer needs to know about algorithms and data structures, with emphasis on applications and scientific performance analysis of Java implementations. Part I covers elementary data structures, sorting, and searching algorithms. Part II focuses on graph- and string-processing algorithms.
     Princeton University Algorithms, Part II

This course covers the essential information that every serious programmer needs to know about algorithms and data structures, with emphasis on applications and scientific performance analysis of Java implementations. Part I covers elementary data structures, sorting, and searching algorithms. Part II focuses on graph- and string-processing algorithms.